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Abstract-A bifurcation analysis of a solid composed of allernating material layers is carried out.
We study the conditions under which periodic incremental deformations (eigenmodes), consistent
with an overall homogeneous stretching, can emerge when the solid is subjected to plane strain,
uniaxial tension parallel to the layer interfaces. These undulatory eigenmodes arc in competition
with shear localization, taken here to be signaled by a loss ofellipticity of the governing incremental
equations. The influence of various material parameters on this competition is discussed and contact
is made with previous work.

1. INTRODUCTION

When subjected to large strains, solids consisting oflayers ofalternating material properties
can exhibit a variety of bifurcation modes. Partly motivating the bifurcation study presented
here is one example of such a layered solid, a 100% pearlitic steel which consists of pearlite
colonies, each composed of alternating carbide and ferrite plates. Observations of pearlite
subjected to overall uniaxial tension reveal that micro-crack initiation appears to result
from one of two differing colony-scale bifurcation modes: a periodic, symmetric necking of
the carbide plates, and shear band fonnation in the ferrite[l]. This varying behavior, which
can be linked to the metallurgical treatment, is of some interest since the carbide necking
mode leads to higher overall ductilities than does shear banding.

Our intention here is to study the conditions under which periodic, symmetric necking
modes akin to those observed in pearlite can emerge, and to compare these conditions with
those for shear band formation. Such modes appear to be the relevant ones in pearlite,
perhaps because modes involving gross shape changes, for example overall bending of the
colony, are ruled out by the constraints imposed by adjacent colonies. Bifurcation modes
of a layered solid have also been studied by Triantafyllidis and Maker[2], who admit a wide
variety ofmodes, not only those with a periodicity identical to the layering. Our contention,
however, is that while the modes admitted in [2] could be observed (and at a lower strain)
in an infinite, unconstrained solid, a finite, constrained colony is forced to admit only the
modes contemplated here.

A preliminary study of the competition between necking and shear banding was carried
out by Steif[3], who investigated the emergence of plane strain undulations at bimaterial
interfaces. He considered an infinite solid composed of a single layer of one material,
sandwiched between and bonded to half-spaces of a different material, which is subjected
to a unifonn, in:plane straining parallel to the interface. Inferences concerning the effect
of material properties on the competition between modes were drawn from studying the
conditions under which undulations confined to the interfaces can appear prior to the
equations losing ellipticity, a signal that localized shearing can occur. As seen below, the
undulatory modes studied in [3] correspond to the periodic,. symmetric necking modes of a
layered solid in the limit as one layer becomes very thick compared to the other.

2. FIELD EQUATIONS

The infinite, layered solid to be considered is shown schematically in Fig. I; the
alternating layers are labelled A and B. Materials A and B are time-independent and
incompressible, and the layers are perfectly bonded. Up to the current instant under
consideration, the solid has been subjected to a uniform in-plane straining with the principal
stretches parallel with the XI- and x2-axes. The materials are assumed to be incrementally
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Fig. 1. Schematic of infinite layered composite.

orthotropic, with the incremental deformations from the current state taken to be related
to the stress rates according to [4]

where £4P are Cartesian components of the Eulerian strain-rate, &4P are the components
of the Jaumann derivative of the true (Cauchy) stress, and subscripts IX and p take on the
values 1and 2. The material is incrementally isotropic when the incremental moduli p* and
p are equal. The true stresses in the XI-X2 plane at the current instant are taken to be 0'11 = 0'

and 0'22 = 0 (plane strain, uniaxial tension). Note that 0' can be different in A and B.
The method of solution follows that given in [3] very closely, with incremental equi

librium expressed in terms of the nominal stress-rate n4 p. By virtue of incompressibility, the
velocities V. (displacement increments) are derivable from a stream function t/J

VI = t/J.2

where

00(). ==~.
• uX

4

Expressing the nominal stress-rates in terms of the velocities, one finds that the incremental
deformations satisfy equilibrium if

(1)

Conditions which enforce continuity of traction-rates and velocities at the interfaces
are

(2a)

(2b)

(2c,d)

~here [ ] denotes the difference in the values of the enclosed quantity at the interface as
one approaches from A and from B.
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3. EIGENMODES

Searching for the emergence of interface undulations, we inquire as to whether there
exist incremental deformations (eigenmodes) which are periodic in XI of the form

. 2nxit/! =!(X2)SIO-,-.
A

Furthermore, consistent with our intention to investigate the class of bifurcation
modes which are relevant to the tensile straining of a pearlite colony, we restrict our search
to eigenmodes involving identical, symmetric deformations in all A layers and in all B
layers. Such eigenmodes leave the center-line of each layer straight and untranslated,
and they produce deformations which are symmetric about each center-line. Eigenmodes
satisfying this periodicity in the X2 direction can be expressed in the form

a
0< X2 < 2"

a b
- < X2 <
2 2

where ex and Pare, in general, complex constants. (Henceforth, ex and Pwill not function
as subscripts to indicate Cartesian components.) Since the layer deformations are identical
and symmetric, it is only necessary to consider

Substituting the assumed forms for t/! into the equilibrium equation (I) for A and B,
one finds that ex and Psatisfy

p2 = RB - 1±iJ2RB - I - S~
RB-SB

where R = J-L/2J-L* and S = (J/4J-L* in each ofA and B. Henceforth, a quantity with a subscript
(or superscript) A or B refers to the appropriate material.

In what follows, we will focus on the case in which R > I in A and B, a condition
satisfied by most constitutive models for metals. The two relevant regimes are then: the
elliptic regime, S < J2R - I, and the hyperbolic regime, J2R - 1 < S < R. (A more
extensive discussion of the various regimes can be found in the study by Hill and
Hutchinson[4] of bifurcation modes in a rectangular block subjected to plane strain
tension.) Thus, for a layered solid composed of two materials, there are three relevant
combinations of regimes: both materials elliptic; one material elliptic, one material
hyperbolic; both materials hyperbolic. Without loss of generality, we will take A to be
hyperbolic when only one of the two materials is hyperboli~.

In the elliptic regime we take

(3a)

(3b)

where c and dare complex-valued amplitudes, and Re[ ] denotes the real part of the enclosed
quantity.
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The constants IX and f3 can be expressed in terms of their real and imaginary parts
IX =PA + irA, f3 = Pa + ira, where P and r for each layer are given by

2 2 R-I
P -r =-

R-S

In the hyperbolic regime we take

2 2 JR+S
p +r = R-S'

where C" C2, d, and d2 are real amplitudes, and P and r are now given by

(4a)

(4b)

2 2 2JS2_2R+ I
P -r =

R-S
2 2 2(R-I)

P +r = R-S .

When A is hyperbolic and B is elliptic, eqns (3b) and (4a) are used, with the appropriate
definitions for p and r.

In each of the three cases, the respective forms for fA(X2) and fB(X2) are substituted into
the continuity conditions (2). Lengthy, though straightforward, manipulations similar to
those outlined in [3] are then required to establish the conditions under which there exists
a non-trivial solution to the incremental equations. This bifurcation condition depends on
the material properties RA, SA, RB, SB, e== J.I.:IJ.l.X, and the dimensionless wavenumbers
qA = nalA. and qB = n(b-a)/A.· The bifurcation conditions for the three combinations of
regimes are found in the Appendix. Previous results[3, 4] are reproduced by taking the
appropriate limits of e, qA and qa·

4, RESULTS AND DISCUSSION

Calculations are first carried out taking materials A and B to be isotropic, incom
pressible, hyperelastic solids. This particular choice of constitutive model for metals is
consistent with accumulating evidence (see Hutchinson[5]) that predictions of bifurcation
phenomena depend rather sensitively on the precise constitutive model employed. Generally,
the adoption of a flow theory with a smooth yield surface tends to lead to unrealistically
high predictions of bifurcation strains. On the other hand, models which incorporate a yield
surface vertex and, hence, a more compliant response to non-proportional stress increments
result in more realistic estimates of bifurcation strains. The incremental moduli derived
from a deformation theory ofplasticity (and, in particular, a hyperelastic solid) can represent
the moduli for the total loading regime at a yield surface vertex. In particular, we take the
relation between true-stress and logarithmic strain to be

(J = keN (5)

in plane strain tension, where the stiffness k and the hardening rate N generally take
on different values in materials A and B. After' nondimensionalizing the equations, the
independent parameters are NA, NB and k, == kBlkA' For this constitutive law, the quantities
R, Sand eare given by

e e
R = Ncoth (2e) S = N
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The previous study[3], which considered the same material law and corresponds to
taking qo --+ 00 in the present calculation, revealed that when either A or B is much stiffer
than the other (k,« 1 or k, » 1), the bifurcation behavior generally is similar to that
exhibited by the stiffer solid alone. Undulation bifurcations can occur while both materials
are still elliptic, provided the hardening rate of the more compliant solid is not too low.
When the hardening rate of the more compliant solid is significantly less than that of the
stiffer solid, shear bands in the more compliant solid always precede undulation modes.
The general trend was for similar hardening rates and dissimilar stiffnesses to promote
undulations over shear banding.

Identical trends were found here when the layer thickness ratio (b-a)ja was taken to
be large, but finite. Here, we focus on the influence of varying (b-a)ja. Consider the curves
shown in Fig. 2, corresponding to a case of dissimilar hardening rates. Clearly, there is no
dependence on the thickness ratio when the wavelength is short compared with the layer
thicknesses. In fact, the thickness ratio only has an influence when the wavelength exceeds
a value that seems to scale with the layer thickness ratio. For example, when (b-a)ja = 7.0
(the thickness ratio of ferrite to carbide in pearlite), the previous results are essentially
reproduced, provided the wavelength is less than 14 times the thickness of layer A. For
longer wavelengths, the assumption that B is semi-infinite leads to an underestimation of
the bifurcation strain. This trend continues as (b-a)ja is reduced, with the semi-infinite
results significantly underestimating the bifurcation strain over an increasing range of
wavelengths.

The same dependence on relative layer thickness appears when the hardening rates are
similar: the undulation bifurcation strain generally increases as the relative thickness of the
more compliant layer decreases. One can explain this trend as follows. The stiffer layer, say
A, dictates the shape of the bifurcation mode; the more compliant layer merely deforms to
accommodate the developing neck in such a way that its mid-plane remains stationary. For
a given amplitude of the bifurcation mode, the transverse strains E22 required to accom
modate the necking increase as the thickness of the more compliant layer decreases.

As the wavelength becomes very long compared with the layer thicknesses (qA --+ 0
and qB --+ 0), the strain at which undulation bifurcations occur rises without bound. This
was observed in the previous study[3], though it was then thought that this long wavelength
behavior was a consequence of assuming layer B was semi-infinite. If one substitutes eqn
(3) or (4) into the displacement continuity conditions (2c) and (2d), and lets qA and qo both
approach zero, one readily sees that the eigenmode must have zero displacement at the
interfaces. A more physical appreciation of this point is obtained by considering some point
at the interface, say (0, aj2), before bifurcation. Without loss of generality, take the
incremental strain EI J of the contemplated eigenmode to be positive. Continuity of dis-
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Fig. 2. Dependence of bifurcation strain on relative thickness ratio (b - 0)/0 for a case of dissimilar
hardening rates (- A and B elliptic, --- A hyperbolic, B elliptic).
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placements and incompressibility imply that e22 is continuous across the interface and is
negative. Now, because the layer center-lines at X2 = 0 and X2 = b/2 do not translate in the
periodic, symmetric modes considered here, either layer A or layer B must be expanding
along the line XI = 0; hence, the incremental strain e22 changes sign in one of the layers.
Note also that the incremental stresses and strains of a bifurcation mode vary in a direc
tion normal to the layer over a length scale of the wavelength A. In particular, as the
wavelength becomes long compared with one or both layers. the incremental strains
cannot vary significantly over the thickness and certainly cannot change sign. Thus, the
kinematic restrictions of incompressibility and displacement continuity at the interface
preclude periodic, symmetric bifurcations with wavelengths greatly in excess of either
of the layer thicknesses.

This corrects the previous contention[3] that the long wavelength behavior was a
consequence of taking B to be semi-infinite. Unpublished work[6] on compressible materials
suggests that removing the incompressibility constraint makes long wavelength bifurcations
possible. One interesting consequence of the long wavelength behavior is that one undu
latory mode ofa definite wavelength would emerge before all others. For a relatively narrow
stiffer layer, this wavelength is five to ten times the thickness of the stiffer layer. This is in
contrast to necking bifurcations in an isolated block[4] for which the longest wavelength
mode consistent with the applied loading is predicted to emerge first.

We close by investigating briefly the effect of changing the constitutive description
slightly. Instead of the hyperelastic law, we consider the hypoelastic deformation theory
employed by Storen and Rice[7] in their study of sheet necking. Given the same uniaxial
stress-strain relation, the hypoelastic and hyperelastic versions coincide when the principal
stretch directions remain fixed relative to the material. The hypoelastic version is even
more compliant with respect to non-proportional stress increments than is the hyperelastic
version. For in-plane deformations, the quantities Rand S are now given by

I
R=

2N

e
S=

N

where again we have specialized to the power law stress-strain relation (5). It is required
that N < 0.5 and e < 0.5 for the bifurcation equations given in the Appendix to be valid.
Note the two models coincide for infinitesimal strains.

Consistent with other studies that have compared these two constitutive models, the
hypoelastic model was here found to lead to slightly lower bifurcation strains. In Fig. 3 we
compare the models for two distinct sets of material parameters. The difference between
the two models is very slight in the case when k, = 0.1, i.e. when undulation bifurcations
occur with both A and B elliptic, and at relatively small strains. The differences between
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Fig. 3. Comparison of hyperelastic and hypoelastic constitutive laws (-A and B elliptic, --- A
hyperbolic, B elliptic).
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the models are more evident at the higher strains at which undulations emerge when the
stiffer layer has a high hardening rate. This difference appears not to be very significant
insofar as both theories predict shear bands to precede undulation bifurcations.

With the results of the present study and the previous one[3], one may speculate as to
the competition between necking and shear band modes in pearlite. One can interpret the
carbide layer as the relatively thin, stiff layer and the ferrite as the more compliant thick
layer. Shear banding in the ferrite could occur before carbide necking if the hardening rate
of the ferrite was sufficiently low. Furthermore, there is a preferred carbide necking mode
which has a wavelength which scales with the layer thicknesses, independent of the overall
colony size.
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APPENDIX

The bifurcation equations are given in this Appendix for the three combinations of deformation regimes in
A and B. The notation of the subsequent bifurcation formulae is considerably simplified by defining the following
quantities:

c, = cos (2pq)

W, = P cos (pq)

s, = sin (2pq)

Q, = sin (pq)

s, = sinh (2rq)

Q, = sin (rq)

x=J~~~.

c, = cosh (2rq)

W, = r cos (rq)

Each of the above quantities takes on a subscript or superscript A or B, depending on the layer.

Case (i): A and B elliptic.

{
s; s~}{s: s~} 2(RCSA) [(I-SA)XA-SAl-+[(I-SA)XA+S,j- --- +(RB-SB)~
h ~ h ~

{ s: s~}{S: s;-} [ {S: ~}{s: s~}X [(I-SB)Xo-SB1-+[(I-So)XB+Sol- --- -~ (I-SA)(I-SB) --- ---
Po ro p/\ r/\ p/\ 'A PB 'A

+4(RA- S/\)(RlI-So)[hS~ +rA.I~I[pBs: +rBs~I+2(1- SA)(Ro-So){~ - ~}[paS: +roS~I+2(I-SB)
p/\ rA

x (RA-SA){~ - ~}[pAS: +rAs~I+2(RA -SA)(RB-SB){XA[C: +c~J[c~ -c:l+XB[c: +C~J(c~-c:]}J= O.
P. '.

Case (ii): A hyperbolic, B elliptic.

(RA-SA)2[(I-pl)2 W~Q:-(I-d)2 W:Q~I(r.s:-p.s~l

-2~(RB-SB)(RA-SA){[(I-pl)2W~Q:-(1-rl)2W:Q~J(rB(l+XB)s: +PB(XB-I)s~l

- PBrB(Pl- r1)[W: W~(c~ - c:)+ X.Q~Q:(c~+C:)]}

+2~2(RB-SB)[W~Q: - W:Q~I{ra[(I-SB)XB-SBls:+PB[(I-SB)XB+SB]sm = o.
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Case (iii): A and B hyperbolic.

(R" -S..Y[(l-P~YW~Q:-(1-r~)2W:Q~]{W~Q:- W;Q~l

-2(R"-S...)(RB-S'>~{(l-pn{l-pi)W~W~Q:Q: +{l-r~)(l-ri)W:W:Q~Q~

-[(l-pi)(l-ri)W~W:Q;Q~+ (l-rl)(l-p~)W~W;Q~Q:J

+i(P~ -rl)(Pi-ri)[W~W:Q~Q;+ W~W:Q~Q:])

+(R8-S8)2~2[(l_p~)l W~Q:-(I-r~)2W:Q~J[W~Q;- W;Q~] =o.


